Data Structures and Algorithms
Primary version
Primary version
  • Data Structures and Algorithms
  • Algorithms Analysis
    • Measuring Resource Consumption
    • Growth Rates
    • Asymptotic Notation
    • Analysis of Linear Search
    • Analysis of Binary Search
    • How to do an analysis in 5 steps
  • Recursion
    • Writing a recursive function
    • How do recursive functions work?
    • Analysis of a Recursive Function
    • Drawbacks of Recursion and Caution
  • Lists
    • Implementation
    • Linked List
      • Concepts
      • Implementation - List and Nodes
      • Implementation - push_front(), pop_front()
      • Implementation - Iterators
      • Modification - Sentinel Nodes
  • Stacks and Queues
    • Stack Implementation
    • Queue Implementation
  • Table
    • A Simple Implementation
    • Hash Tables
      • Bucketing
      • Chaining
      • Linear Probing
  • Sorting
    • Simple Sorts
      • Bubble Sort
      • Insertion Sort
      • Selection Sort
    • Merge Sort
    • Quick Sort
    • Heap and Heap Sort
      • Priority Queues using Binary Heaps
      • Heapify and Heap Sort
  • Trees
    • Binary Trees
    • Binary Search Trees
    • BST Implemenation
    • Iterative Methods
    • Recursive Methods
  • AVL Trees
  • Red Black Trees
  • 2-3 Trees
  • Graphs
  • Introduction to Computational Theory
  • Appendix: Markdown
  • Appendix: Mathematics Review
Powered by GitBook
On this page
  1. Trees

Binary Trees

PreviousTreesNextBinary Search Trees

Last updated 6 years ago

A binary tree is a tree where every node has 2 subtrees that are also binary trees. The subtrees may be empty. The following is a binary tree:

Note that the term binary tree describes only the shape, it does not specify the ordering of values within the tree.

The following isn't (node with 2 has three subtrees)